
April, 2004 

Advisor Answers 

Accessing Word form data 

VFP 8/7/6 

Q: I have Word documents that contain textboxes, checkboxes, and so 
forth. I'd like to read the data entered by the users into FoxPro tables. 

Is there a way to do this? 

A: Textboxes, checkboxes, and dropdowns in a document are 

managed using the document's FormFields collection. You can examine 
their contents and values and manipulate them by working with that 

collection. 

Before I show you how to access the data in Word's controls, let me 

provide some background. Word allows you to create forms that let 
users enter data without modifying fixed items. These forms are 

analogous both to VFP's forms and to paper forms. 

To create a form in Word, you use the Forms toolbar (View | Toolbars 

| Forms). It includes the three controls available (textbox, checkbox 

and dropdown). You add a control to a form by clicking that control on 
the toolbar—it's placed at the current insertion point. Once you add a 

control, you can set its properties by double-clicking on it or by 
clicking the Form Field Options button on the Forms toolbar. The 

properties vary with the control, and include things such as maximum 
text length for a textbox, the list of items to include in a dropdown, 

and whether a checkbox is initially checked. 

Once you've finished designing a Word form, you change it from 

design mode to data entry mode by protecting the document (or the 
sections of the document that include controls). You do so by clicking 

the Protect Form button on the Forms toolbar or by choosing Tools | 
Protect Document from the menu. In the latter case, you then need to 

specify that you're protecting the document for Forms and, if the 
document has multiple sections, indicate which sections are to be 

protected. When you use the menu item, you can also attach a 

password to the document to keep other people from changing it back 
to design mode. 

Once a document has been protected, anyone who opens it can't 
change the regular text it contains; all he or she can do is use the 



controls. (However, unless a password is attached, any user can 

unprotect the document—that is, change it to design mode—and 
modify the regular text.) 

To read the data from Word's controls via Automation, you need to 
unprotect the document first. The Document object's Unprotect 

method handles this task. The method accepts the document's 
password as an optional parameter: 

oDocument.Unprotect("My Password") 

Once you unprotect the document, you can access all the data in the 

controls using the FormFields collection. Like most collections, 
FormFields has a Count property to indicate how many items are in the 

collection and you can address the individual FormField items using the 
FormFields(nItemNumber) notation. 

Retrieving the data is a little different for each type of control. The 

FormField object has a Type property that lets you determine the type 
of control. For textboxes, you can retrieve the user's entry using the 

Range.Text property: 

oFormField.Range.Text 

For checkboxes, the Checkbox.Value property returns .T. or .F.: 

oFormField.Checkbox.Value 

For dropdowns, Dropdown.Value returns a number indicating the 
position of the chosen item in the list: 

oFormField.Dropdown.Value 

You may not want to depend on the order of the fields in the document 

to indicate which is which. Fortunately, Word allows you to assign a 
bookmark to each control, and to retrieve the bookmark's name using 

the Name property of the FormField. You can use the Name property 

to ensure you store the data to the right field in your table. 

This code (FormFields.PRG on this month's Professional Resource CD) 

opens a Word form (WordFormFilled.DOC on the PRD), and retrieves 
the data stored there. It puts each value into a variable with the same 

name as the corresponding control on the Word form. When it's done, 
it displays a messagebox showing the names and values of all the 

variables created. 

#DEFINE wdFieldFormTextInput  70   



#DEFINE wdFieldFormCheckBox  71   
#DEFINE wdFieldFormDropDown  83   
 
#DEFINE CRLF CHR(13) + CHR(10) 
 
LOCAL oWord, oDoc, oFormField, nFieldCount, nField 
LOCAL cFieldName, nFieldType, cOutput 
 
oWord = CREATEOBJECT("Word.Application") 
*** Don't forget to add the path to the filename 
oDoc = oWord.Documents.Open("WordFormFilled.DOC") 
 
 
WITH oDoc 
  .Unprotect() 
  nFieldCount = .FormFields.Count 
 
  cOutput = "" 
  FOR nField = 1 TO nFieldCount 
    WITH .FormFields[nField] 
      cFieldName = .Name 
      nFieldType = .Type 
       
      DO CASE  
      CASE nFieldType = wdFieldFormTextInput 
        STORE .Range.Text TO (cFieldName) 
      CASE nFieldType = wdFieldFormCheckBox 
        STORE .Checkbox.Value TO (cFieldName) 
      CASE nFieldType = wdFieldFormDropDown 
        STORE .Dropdown.Value TO (cFieldName) 
      ENDCASE  
    ENDWITH 
    cOutput = cOutput + CRLF + cFieldName + " = " + ; 
              TRANSFORM(EVALUATE(cFieldName)) 
  ENDFOR 
   
  * Clean up 
  .Close(0) 
ENDWITH  
oWord.Quit() 
 
MESSAGEBOX(cOutput) 
 
RETURN 

–Tamar 


